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1.0 Introduction 
 

1.1 Fermat’s Theorem of Least Time 
 

Imagine coming home from work one cold winter evening and finding in your mailbox a peculiar 
challenge from one of your classmates. It states: Find the quickest path between two points in 
space. Ha! You sneer at the utter simplicity of the problem before you, insulted that your classmate, 
a respected intellectual, would waste your time with this no-brainer. “It’s a straight line of course!” 
You shout with an expression of blind confidence, which quickly disappears as a small post-it note 
falls out from the envelope.  
 
The Brachistochrone problem, the simplest of problems in Calculus of Variations, was first posed 
by mathematician Johann Bernoulli in his 1696 Acta Eruditorium as a direct challenge to all 
European mathematicians. Privately, Isaac Newton was the first to receive the challenge in his 
mailbox as he came home one day from working at the Royal Mint. Using Fermat’s Theorem of 
Least Time, Newton solved the problem in a night, concluding using differential equations that the 
quickest path between two points in space was indeed a cycloid curve and not a straight line. 
 
You stand speechless, baffled by this seemingly incoherent and strange concept which threatened 
to expose the inherent flaw in your reasoning, and the flaw in your inherent being. Where did you 
go wrong? Was your logic incoherent? How could there have been any other answer but the 
obvious, a straight line!? You dart back into the house in frustration, determined to search up the 
full solution online. You find the exact statement of Bernoulli’s problem in Acta Eruditorum:  

 
Given two points A and B in the vertical plane, with A not lower than B, 

what is the curve traced out by a point ac ted on only by gravity, which starts 
at A and reaches B in the shortest time. [1] 

 
Below it is a reference to Fermat’s Theorem of Least Time:  
 

Fermat's principle or the principle of least time, named after French mathematician Pierre de 
Fermat, is the principle that the path taken between two points by a ray of light is the path that 

can be traversed in the least time [2] 
 
In other words, you discover that the first step to answering the Brachistochrone problem is to 
define the “quickest” path between two points A and B as the path which takes the shortest time, 
and not the path with the least distance because, under the influence of gravitational forces, objects 
in space must change velocity. Sounds reasonable enough! But you still refuse to admit defeat 
because you still don’t have a clear picture of how a curve can best a straight line. Well as an 
analogy, in the 21st century most people use a GPS to help them find the quickest route to their 
destination, but often the GPS doesn’t take into account that shorter routes may have a slower 
speed limit and therefore takes longer time to travel. The fastest route practically is often a highway, 
which is a much longer road, but takes shorter time to travel due to the faster speed limit. Now, 
applying this to travel on a two-dimensional plane by gravitational force only, the concept is the 
same. For over 300 years, the common misconception surrounding this classic problem in 
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mathematics was that the shortest path was a straight line. However, as mathematics must 
ultimately shift from the theoretical to the practical, the straight line solution does not work when 
gravity is taken into consideration.  
 

1.2 Aim and Rationale 
 

The aim of this investigation is to determine a step-by-step solution to the Brachistochrone 
Problem, showing that Calculus of Variations is required to solve the problem, and that the 
quickest path between two points facilitated by gravity is the path of a cycloid. Ultimately, this 
investigation will show that differential equations and curricular knowledge in the field of Calculus 
(particularly the Euler-Lagrange concept) can be employed to solve problems with real world 
applications.  
 
2.0 History 
 

2.1 The Five Mathematicians  
 

As early as Galileo Galilei, the Brachistochrone problem has been studied and debated. Galileo's 
version of the problem was finding the straight line from a point A to a point B in the vertical line 
in which it would reach the quickest. To do this he calculated the time taken for the point to 
move from A to B in a straight line. He then proved that the point would reach B quicker if it first 
traveled to C then to B, where C was a point on a circle. [3] 
 
Figure 1: Galileo’s solution [5] 

 

 
 
Although Galileo was correct in assuming that a circular arc corresponds to a faster travel, he had 
not quite arrived at the correct solution, the Brachistochrone curve. It wasn’t until 58 years later 
when Johann Bernoulli formally posed the problem that five correct solutions were determined, 
each using a different method. The five solutions came from Johann Bernoulli himself, his brother 
and rival Jacob Bernoulli, his companion L’Hopital, his teacher Gottfried Leibniz, and finally, 
Isaac Newton. Upon publishing the problem, Johann and Leibniz tempted Newton by saying: 
  
“There are fewer who are likely to solve our excellent problems, aye, fewer even among the very 
mathematicians who boast that [they]... have wonderfully extended its bounds by means of the 

golden theorems which (they thought) were known to no one, but which in fact had long 
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previously been published by others." [1] 
 
When Newton solved the question in one night and sent his solution to Johann Bernoulli without 
a sender name, Bernoulli said “Ahh... I recognize the lion by his paw.” [4]. 
 
Eventually, the development of Calculus of Variations, a version of Calculus created by Leonard 
Euler specifically to define the terms of the Brachistochrone problem, combined elements in each 
of the five solutions to formulate the more modern solution we now recognize as the Euler-
Lagrange method. This investigation will focus only on the method Euler-Lagrange as it is 
arguably the most powerful solution we have today.  
 

2.2 Brainstorming  
 

Before we delve into the complexities of Calculus of Variations, it is important to view the 
Brachistochrone problem as an intuitive concept. Suppose we want to find the quickest path from 
A to B when they are both at ground level. Clearly, a rolling object such as a bead will take an 
infinitely large amount of time to get from A to B. In other words, it will never make the trip 
because according to the law of conservation of energy, the bead needs to change heights in order 
to gain energy. We can quickly see that a straight line cannot be the solution.  

 
Figure 2: Straight Line from A to B [5] 

 
 
Considering a rectangular or triangular path,  
 
      Figure 3: Rectangular and Triangular paths [5] 

 

 
 
These wouldn’t work either despite satisfying the law of conservation of energy because they both 
require that the bead change direction instantaneously. In the rectangular path, the object must 
make a 90 degrees’ direction change as it descends and ascends again, while in the triangular path, 
the object must make a sharp turn at the bottom of the triangle. The only way for the object to 
travel the full path and change directions instantaneously in both paths is if there is an infinite 
amount of energy applied to the object. Therefore, it can be concluded that the quickest path cannot 
contain angled points, or kinks and corners in the A-B interval. In terms of Calculus, any paths 
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with the potential to be a Brachistochrone must be continuous and differentiable between A and 
B. But there are infinitely many different differentiable paths between A and B so how do we 
choose the best one? Well first we have to define any path from A to B (A is not lower than B keep 
in mind) in terms of an equation.  
 
If the distance of any type of path between points A and B is d, then the velocity of any object 
along that path would be:  

 
𝑣 = #$

#%
, where 𝑡 = #$

'
(
) , 

 
According to the Law of Conservation of Energy, the total mechanical energy of any object 
travelling from A to B must be constant:   
 

𝐸+ = 𝐸, 
1
2𝑚𝑣

0 = 𝑚𝑔𝑦	 

𝑣 = 2𝑔𝑦 
 
According to the Pythagorean Theorem,  
 
Figure 4: Sample Curve of Any path from A to B, graphed on Macbook Pro Grapher 
 

 
 

𝑑𝑠0 = 𝑑𝑦0 + 𝑑𝑥0 
 
                   𝑑𝑠 = 𝑑𝑦0 + 𝑑𝑥0 
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Dividing all terms by dx,  
  

𝑑𝑠
𝑑𝑥 =

𝑑𝑦0 + 𝑑𝑥0

𝑑𝑥0
 

 
𝑑𝑠
𝑑𝑥 =

𝑑𝑦0 + 𝑑𝑥0

𝑑𝑥0
 

 
𝑑𝑠 = 𝑦′0 + 1𝑑𝑥 

 
If we look at this equation closely, we see that it resembles the formula for the arc length of a 
graph, which is what we want because essentially, the arc length formula can be used to determine 
the length of any path from A to B in a 2-D plane:  
 

𝑠 = 1 + (
𝑑𝑦
𝑑𝑥)

0𝑑𝑥 

 
Hence, substituting 𝑑𝑠 = 𝑦′0 + 1𝑑𝑥 and 𝑣 = 2𝑔𝑦 into the equation,  
 

𝑡 =
𝑦′0 + 1
2𝑔𝑦

(

)
	𝑑𝑥 =

1
2𝑔

𝑦′0 + 1
𝑦 𝑑𝑥

(

)
 

 
Already, this equation shows that for any path between A and B, defined by the graph of y, the 

time taken to travel the path varies by ;<=>?
0@;

. Unlike a normal function where the dependent 

variables x and y vary, this time the whole function varies. In short, this is known as a “functional” 
group and is an integral part to the method using Calculus of Variations.  
 
3.0 Calculus of Variations 
 

3.1 The Euler-Lagrange Equation  
 

Calculus of Variations was first used by Euler, who collaborated with J. L. Lagrange to generalize 
Newton’s solution to the Brachistochrone problem. It is defined as using “calculus to find the 
maxima and minima of a function which depends for its values on another function or a curve.” 
[3]. Generally, we can solve for the minimum time taken to travel from point A to B 𝑡 =

;<=>?
0@;

(
) 	 by minimizing the function 	𝑓 𝑥 = ;<=>?

;
. To minimize 𝑓 𝑥 , we will use the 

fundamental Euler-Lagrange Equation [5]:  
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𝜕𝐹
𝜕𝑦 −

𝑑
𝑑𝑥

𝜕𝐹
𝜕𝑦< = 0	 

In this case, F is the function we are trying to minimize.  
 
Note: In Calculus of Variations, 𝜕	denotes the partial derivative of a function (basically, you are 
only taking the derivative of the desired variable, or part of the function). 
 

Applying the equation 𝐹 = 𝑓 𝑥 = ;<=>?
;

 to the Euler-Lagrange equation and using conventional 

calculus rules of derivation,  
 

𝜕𝐹
𝜕𝑦 =

𝑑
𝑑𝑥

𝜕𝐹
𝜕𝑦′  

 
LHS:  
 

𝜕𝐹
𝜕𝑦 =

𝜕
𝜕𝑦 (

𝑦′0 + 1
𝑦 ) 

= 𝑦′0 + 1 F
F;

𝑦G
H
=  

= 𝑦′0 + 1 − ?
0
𝑦G

I
=  

  

∴
𝜕𝐹
𝜕𝑦 = −

1
2 (

𝑦′0 + 1

𝑦
K
0

) 

RHS:  
 
To evaluate #

#L
FM
F;

, we will first evaluate the function F in terms of y’, and then derive it in 
terms of x.  
 
Hence,  

𝜕𝐹
𝜕𝑦′ =

𝜕
𝜕𝑦′ (

𝑦′0 + 1
𝑦 ) 

= ?
;

F
F;N

(1 + 𝑦<0)
H
= 

= ?
;
?
0
(1 + 𝑦<0)G

H
=2𝑦′ 

 
∴ FM
F;<

= ;<

;(?>;N=)
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Taking the derivative of FM

F;
 with respect to x,  

 
#
#L

FM
F;<

= #
#L

;<

;(?>;N=)
 

 
Using substitution to simplify the process, we let a=y, b=y’ and c=y’’. Hence,  
 

#
#L

FM
F;<

= #
#L

(
)(?>(=)

 

 
Now, we must use the quotient rule to differentiate. 𝑙𝑒𝑡	𝑠 𝑥 = 𝑏, 𝑎𝑛𝑑	𝑙𝑒𝑡	𝑣 𝑥 =

𝑎 1 + 𝑏0 . Hence, 𝑠< 𝑥 = 𝑐	𝑎𝑛𝑑	𝑢𝑠𝑖𝑛𝑔	𝑡ℎ𝑒	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑟𝑢𝑙𝑒,	 
 

𝑣< 𝑥 =
1
2𝑎

G?0𝑏 1 + 𝑏0 + 𝑎
1
2 1 + 𝑏0 G?02𝑏𝑐  

 

=
𝑏𝑐 𝑎 2 𝑎 + (𝑏)( 1 + 𝑏0)( 1 + 𝑏0)

2 𝑎 1 + 𝑏0 .
 

 

𝑣′(𝑥) =
2𝑎𝑏𝑐 + 𝑏(1 + 𝑏0)
2 𝑎 1 + 𝑏0 .

 

 
Applying the quotient rule,  

 

𝑑
𝑑𝑥

𝜕𝐹
𝜕𝑦′ =

𝑐 𝑎 1 + 𝑏0 − (b 2𝑎𝑏𝑐 + 𝑏 1 + 𝑏
0

2 𝑎 1 + 𝑏0
)

𝑎(1 + 𝑏0)  

 

=
1

𝑎 1 + 𝑏0
2𝑎 1 + 𝑏0 𝑐 − 2𝑎𝑏0𝑐 − 𝑏0 1 + 𝑏0

2𝑎(1 + 𝑏0)  

 
 

=
1

𝑎 1 + 𝑏0
(

𝑐
1 + 𝑏0 −

𝑏0

2𝑎) 

 
 

∴ #
#L

FM
F;<

= 	 ?
; ?>;<=

( ;<<
?>;<=

− ;<=

0;
) 

 
LHS=RHS: 
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𝜕𝐹
𝜕𝑦 =

𝑑
𝑑𝑥

𝜕𝐹
𝜕𝑦′  

 

−
1
2 (

𝑦<0 + 1

𝑦
K
0

) =
1

𝑦 1 + 𝑦′0
(

𝑦′′
1 + 𝑦′0 −

𝑦′0

2𝑦) 

 
Using the same substitution, a=y, b=y’ and c=y’’, 

 

−
1
2 (

𝑏0 + 1

𝑎
K
0

) =
1

𝑎 1 + 𝑏0
(

𝑐
1 + 𝑏0 −

𝑏0

2𝑎) 

 

𝑎 1 + 𝑏0 −
1
2

𝑏0 + 1

𝑎
K
0

=
𝑐

1 + 𝑏0 −
𝑏0

2𝑎 

( 𝑎 1 + 𝑏0 )(−
1
2

𝑏0 + 1

𝑎
K
0

+
𝑏0

2𝑎 =
𝑐

1 + 𝑏0 

 
𝑐

1 + 𝑏0 =
−(1 + 𝑏0)

2𝑎 +
𝑏0

2𝑎 
 

𝑐
1 + 𝑏0 =

−1
2𝑎  

 
2𝑎𝑐 = −1 − 𝑏0 

 
∴ 2𝑦 ∗ 𝑦<< + 1 + 𝑦<0 = 0 

 
The proceeding step after we have reached this equation is where the difficulty arises. As with all 
higher order differential equations, they are extremely difficult to solve, however, we can still 
simplify this equation to a second-order differential equation. Here was Euler’s method:  
 

If we multiply the equation by y’, then:  
 

2𝑦 ∗ 𝑦< ∗ 𝑦<< + 𝑦′ + 𝑦<K = 0 
 

Essentially, if we work backwards from the product rule, we find that: 
 

𝑑
𝑑𝑥 𝑦 + 𝑦 ∗ 𝑦<0 = 2𝑦 ∗ 𝑦< ∗ 𝑦<< + 𝑦′ + 𝑦<K 

 
Therefore, if we integrate the original equation,  
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2𝑦 ∗ 𝑦< ∗ 𝑦<< + 𝑦′ + 𝑦<K 𝑑𝑥 = 0	𝑑𝑥 

𝑑
𝑑𝑥 𝑦 + 𝑦 ∗ 𝑦<0 = 𝐶 

 
𝑦 + 𝑦 ∗ 𝑦<0 = 𝐶 

Solving for y’, 

𝑦′ =
𝐶 − 𝑦
𝑦  

𝑑𝑦
𝑑𝑥 =

𝐶 − 𝑦
𝑦  

 
Now that we have expressed y’ in terms of y, which must remember is the equation of the path 
between points A and B, we have to somehow substitute y’ out of the equation. This can be done 
using parametric equations, since we can’t express y in terms of y’, we have to express it in terms 
of another variable. In this case, that variable is the angle of descent of an object.  
 
Figure 5: Adding a parameter, ∅ graphed on Macbook Pro Grapher 
 

 
 
Since this graph is the generalization for any curve that establishes a path between points A and 
B, we can define our answer in terms of these parameters, specifically the angle ∅.	 
 

Therefore,  

𝑑𝑦
𝑑𝑥 =

𝐶 − 𝑦
𝑦  

𝑑𝑥
𝑑𝑦 =

𝑦
𝐶 − 𝑦 
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𝑡𝑎𝑛	∅ =
𝑦

𝐶 − 𝑦 

Converting this to parametric form,  
𝑠𝑖𝑛∅
𝑐𝑜𝑠∅

0	

=
𝑦

𝐶 − 𝑦 

 
𝐶 − 𝑦 (𝑠𝑖𝑛∅)0 = 𝑦(𝑐𝑜𝑠∅)0 

 
𝐶 (𝑠𝑖𝑛∅)0 = 𝑦[(𝑐𝑜𝑠∅)0 + (𝑠𝑖𝑛∅)0] 

 
𝐶 (𝑠𝑖𝑛∅)0 = 𝑦 

 
Simplifying (𝑠𝑖𝑛∅)0 = ?Gcd$0∅

0
, 

 

𝒚 = 	
𝑪(𝟏 − 𝒄𝒐𝒔𝟐∅)

𝟐  
 

Solving for the x-coordinate using the Chain Rule,  
 
 

𝑑𝑥
𝑑∅ =

𝑑𝑥
𝑑𝑦 ∗

𝑑𝑦
𝑑∅ 

 
𝑑𝑥
𝑑𝑦 =

𝑦
𝐶 − 𝑦 ,

𝑑𝑦
𝑑∅ = 𝐶 ∗ 𝑠𝑖𝑛2∅ = 𝐶 ∗ 2𝑠𝑖𝑛∅𝑐𝑜𝑠∅ 

 
𝑑𝑥
𝑑∅ =

𝑦
𝐶 − 𝑦	(𝐶 ∗ 2𝑠𝑖𝑛∅𝑐𝑜𝑠∅) 

 
Substituting in 𝑦 = 	 𝐶 (𝑠𝑖𝑛∅)0, 

 

𝑑𝑥
�∅ =

𝐶 (𝑠𝑖𝑛∅)0

𝐶 − 𝐶 (𝑠𝑖𝑛∅)0 	(𝐶 ∗ 2𝑠𝑖𝑛∅𝑐𝑜𝑠∅) 

 

𝑑𝑥
𝑑∅ =

(𝑠𝑖𝑛∅)0

1 − (𝑠𝑖𝑛∅)0 	(𝐶 ∗ 2𝑠𝑖𝑛∅𝑐𝑜𝑠∅) 

 
𝑑𝑥
𝑑∅ =

𝑠𝑖𝑛∅	
𝑐𝑜𝑠∅ (𝐶 ∗ 2𝑠𝑖𝑛∅𝑐𝑜𝑠∅) 
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𝑑𝑥
𝑑∅ = 2𝐶 (𝑠𝑖𝑛∅)0 
𝑑𝑥
𝑑∅ = 𝐶(1 − 𝑐𝑜𝑠2∅) 

 

𝑑𝑥 = 𝐶(1 − 𝑐𝑜𝑠2∅)𝑑∅ 

 

𝑥 = 𝐶(∅ −
1
2 𝑠𝑖𝑛2∅) 

 

𝒙 =
𝑪
𝟐 (𝟐∅ − 𝒔𝒊𝒏𝟐∅) 

 
In summary, the two parametric equations that define the path of least time are: 
 

1. 𝑥 = o
0
(2∅ − 𝑠𝑖𝑛2∅) 

 
2. 𝑦 = 	 o(?Gcd$0∅)

0
 

 
The exciting discovery of these two parametric equations surprised the five mathematicians 
because they resemble the very well-known equations of a cycloid, which is a curve that is created 
by drawing out the path of a point on the circumference of a circle rolling on a flat surface. What 
was amazing about the cycloid was that it was the solution to the Brachistochrone problem, the 
solution that Galileo came close to when he proposed that a circular arc path would yield the fastest 
travel time. A cycloid is not a circle, but it is definitely a Brachistochrone curve, and the following 
calculations will prove why.  
 

3.2 The equation of a cycloid  
 

Figure 6: The cycloid [6] 
 

 
 
So far, using Calculus of Variations, we have shown that in the process of minimizing the time 
of travel between two points, we have come across the two parametric equations of a cycloid:  
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1. 𝑥 = o
0
(2∅ − 𝑠𝑖𝑛2∅) 

 
2. 𝑦 = 	 o(?Gcd$0∅)

0
 

 
But how do we know these equations define a cycloid? Well, if we consider that a cycloid is created 
by rotating a circle along a flat surface, then we know that the point on the circumference of the 
circle we are tracing will be moving clockwise. Knowing that the co-ordinates of a circle are 
defined by 𝑥 = 𝑟𝑐𝑜𝑠∅,	and 𝑦 = 𝑟𝑠𝑖𝑛∅, then moving clockwise means that the co-ordinates change 
to 𝑥 = −𝑟𝑠𝑖𝑛∅ and 𝑦 = 𝑟𝑐𝑜𝑠∅. Furthermore, because the circle that draws out the cycloid moves 
in the positive direction along the x-axis, this yields the equation that allows t to represent the angle 
the circle has moved:  

∆𝑥 = 2𝜋𝑟
∅
2𝜋 

 
𝑥 = −𝑟𝑠𝑖𝑛∅ + 𝑟∅ 

 
𝑥 = 𝑟(∅ − 𝑠𝑖𝑛∅) 

 
As for the y-coordinate, we must assume that the center of the circle is at (r,r) so that the 
bottom of the cycloid is on the x-axis. Hence:  

 
 

𝑦 = 𝑟 − 𝑟𝑐𝑜𝑠∅ 
 

𝑦 = 𝑟(1 − 𝑐𝑜𝑠∅) 
 
Now, we have proven that the equations we derived earlier are indeed equations for the cycloid. 
As we can see, the equations have the exact same form, with 𝑟 = o

0
. In other words, C is equal to 

the diameter of the circle which drew the cycloid.  
 
4.0 Solving for time of travel 
 
So, much like how Bernoulli, Newton, Lagrange, and Euler discovered each in their own way that 
the solution to the Brachistochrone problem is indeed a cycloid, we have through this investigation 
shown that minimizing the time taken to travel from point A to B facilitated only by gravity will 
result in the cycloid equations. Intuitively, we also understand that in the real world, if an object 
were to roll down a straight ramp, it would require more time than if it rolled down a cycloid ramp. 
The only logical way to proceed would be to solve for the time that it actually takes for an object 
to travel down such a ramp in order to gain some quantifiable data.  
 
So if we recall the initial investigation of time of travel, we have the equation:  
 

𝑡 =
1
2𝑔

𝑦′0 + 1
𝑦 𝑑𝑥

(

)
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Since we now know that the path must be a cycloid, we can use the differential equation for a 
cycloid we determined earlier to solve for time with respect to the parameters of the cycloid 
equation. We know:  
 

𝑦< =
𝑑𝑦
𝑑𝑥 =

𝐶 − 𝑦
𝑦  

 
And since C=2r from our exploration on cycloids,  

 

𝑑𝑦
𝑑𝑥 =

2𝑟 − 𝑦
𝑦  

 
𝑑𝑦
2𝑟 − 𝑦
𝑦

= 𝑑𝑥 

 
Hence, substituting the cycloid differential equation into our initial equation for time,  

 

𝑡 =
1
2𝑔

𝑦′0 + 1
𝑦 𝑑𝑥

(

)
 

 
 

𝑡 =
1
2𝑔

2𝑟 − 𝑦
𝑦 + 1

𝑦 ∗
𝑑𝑦
2𝑟 − 𝑦
𝑦

(

)
 

 
 

𝑡 =
1
2𝑔

2𝑟 − 𝑦 + 𝑦
𝑦

𝑦(2𝑟 − 𝑦𝑦 )
𝑑𝑦

(

)
 

𝑡 =
1
2𝑔

2𝑟
𝑦(2𝑟 − 𝑦) 𝑑𝑦

(

)
 

 
Rearranging the equation,  

 

𝑡 =
1
2𝑔

−2𝑟
[ 𝑟 − 𝑦 0 − 𝑟0] 𝑑𝑦

(

)
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Substituting in 𝑦 = 𝑟 1 − 𝑐𝑜𝑠∅ 	to the denominator 𝑟 − 𝑦 0 − 𝑟0 , 
  

𝑟 − 𝑦 0 − 𝑟0 = (𝑟 − 𝑟 + 𝑟𝑐𝑜𝑠∅)0 − 𝑟0 
= (𝑟𝑐𝑜𝑠∅)0 − 𝑟0 
= 𝑟0(𝑐𝑜𝑠0∅ − 1) 
= −𝑟0𝑠𝑖𝑛0∅ 

Simplifying the integral,  
 
 

𝑡 =
1
2𝑔

2𝑟
𝑟0𝑠𝑖𝑛0∅𝑑𝑦

(

)
 

 
Now, in order to integrate in terms of ∅, we must substitute dy with an equation in terms of d∅:  
 

Since 𝑦 = 𝑟(1 − 𝑐𝑜𝑠∅),  
𝑑𝑦
𝑑∅ = 𝑟𝑠𝑖𝑛∅ 

 
𝑑𝑦 = 𝑟𝑠𝑖𝑛∅	𝑑∅ 

 
Substituting 𝑑𝑦 = 𝑟𝑠𝑖𝑛∅	𝑑∅,  

 

𝑡 =
1
2𝑔

2𝑟
𝑟0𝑠𝑖𝑛0∅ 𝑟𝑠𝑖𝑛∅	𝑑∅

(

)
 

=
1
2𝑔

2𝑟	𝑑∅
(

)
 

𝒕 =
𝒓
𝒈 ∗ ∅ 

 
Since r and ∅	are both variables for the parametric equations of the cycloid, we can now calculate 
the shortest time of travel between points A and B. We have officially solved the Brachistochrone 
problem as we now have an equation to represent the shortest time.  
 
The Brachistochrone curve equation can be used to demonstrate a variety of properties. First and 
foremost, we can show that the time required to travel down a Brachistochrone curve is indeed 
faster than the time required to travel down a straight ramp. If we set points A (0,0) and B (1,-1) 
in 2-D space as the start and end points of travel (note the y coordinate of B must be lower or equal 
to the y-coordinate of A in order to make a ramp), then we can draw a cycloid connecting the 
points with the following equation:  
 
Using systems of equations and the parametric equations of a cycloid,  
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Since point B (1,-1) 
Y: 1 = 𝑟(1 − 𝑐𝑜𝑠∅) 
X: -1= 𝑟(∅ − 𝑠𝑖𝑛∅) 

 
Hence, Y: 𝑟 = ?

(?Gcd$∅)
 

 
Substituting this into X: -1= 𝑟(∅ − 𝑠𝑖𝑛∅), 

 
-1= ?

(?Gcd$∅)
(∅ − 𝑠𝑖𝑛∅) 

 

𝐺𝑟𝑎𝑝ℎ𝑖𝑛𝑔:	
1

(1 − 𝑐𝑜𝑠∅) ∅ − 𝑠𝑖𝑛∅ + 1 = 0 

 
Figure 7: Graphed using Macbook Pro Grapher 
 

 
 
From analyzing this graph, it is clear that the x-intercept occurs at ∅ ≈ −2.4 in radians. Hence, 
solving for r,  

𝑟 =
1

(1 − cos	(−2.4)) ≈ 0.58	𝑢𝑛𝑖𝑡𝑠 

 
 
Using r=0.58 units and ∅ ≈ −2.4 rad to solve the time of travel (considering that the gravitational 
acceleration of any object on the earth is 9.81m*s-2),  
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𝑡 =
𝑟
𝑔 ∗ ∅ =

0.58
9.81 ∗ −2.4 = 0.5836𝑠 ≈ 0.58𝑠 

 
Generally, this is a much shorter time than if an object were to slide down a ramp from point A 
(0,0) to B (1, -1).  
 
5.0 Real World Applications 
 
There are many real-world applications to the Brachistochrone curve, for example, an extension 
of the curve is the concept of the Tautochrone curve or Isochrone curve which is basically a 
Brachistochrone curve that demonstrates the Tautochrone property. The Tautochrone property is 
satisfied when objects rolling down a cycloidal ramp regardless of where they start, take the same 
amount of time to reach the bottom of the ramp. This makes every point on the cycloid ramp 
isochronous, hence the name Isochrone. 
 
Figure 8: Tautochrone Property [6] 

 
 
As you can see, the balls on this ramp, regardless of where they started rolling from, will reach the 
bottom at exactly the same time. With the Tautochrone property, the real world applications could 
include: building creative roller coasters, industrial applications where mechanical operations must 
be timed perfectly, or in the field of physics and motion. The one largest limitation to the 
investigation of Brachistochrone curves is that they only work when gravity is the only force 
pushing an object down a cycloid ramp, which rarely is ever the case unless you are conducting 
the experiment in an isolated setting such as a laboratory. On a large scale, where air resistance, 
friction, and other parasitic forces hinder the experiment, the accuracy of the ideal model may be 
subject to error.  
 
6.0 Conclusion and Reflection 
 
The marvel of mathematics is how a simple problem can lead to complex and often unfathomable 
concepts and solutions. The Brachistochrone curve, what started out as a simple challenge to 
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deduce the shortest path between two objects in space facilitated by gravity, turned into a whole 
field of mathematics called Calculus of Variations. Overall, we can conclude that it is the 
inquisitive curiosity and insatiable hunger that scientists and mathematicians have for defining and 
discerning the world that allows for such elegant and sophisticated evolutions.  
 
Through this investigation in which I have employed the very fundamental, yet crucial skills of 
calculus, I have by extension and not by purpose, inadvertently gained the knowledge on how to 
solve partial differentiation equations and how to represent equations in parametric form. Although 
my Math 30 IB curriculum taught me most of the key aspects of the calculus skills I used such as 
the quotient rule or the product rule, this investigation has given me much more than curricular 
knowledge, and that is the desire to explore independently. All brilliant mathematicians have done 
it their own way, and this is just my first step into that same realm of discovery.  
 
The journey to discovery does not end here, however, because throughout this investigation, I have 
jarringly come to realize my own shortcomings and mathematical flaws such as forgetting to 
square root or changing a positive sign to a negative sign. These all cost me days of frustration and 
irritation.  
 
In the future, I will stand by the principle that the best maths is explored independently, but the 
occasional challenge wouldn’t hurt.  
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